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Abstract

State-of-the-art machine translation is
based on words. However, Chinese sen-
tences are written in the form of a se-
quence of Chinese characters. Thus, word
boundaries are detected using an off-the-
shelf segmentation method before transla-
tion. Optimal words may be lost as the
Chinese word segmentation and the trans-
lation process are separated. The segmen-
tation does not only depend on the context
but also on the language to be translated
into.
Therefore, we build a translation system
based on Chinese characters directly. Chi-
nese words are identified implicitly in
translation models. In the model train-
ing, word segmentations and alignments
are learned simultaneously, new words are
invented using the Dirichlet process, and
word distributions are calculated by Gibbs
sampling. In search of the best translation,
segmentation alternatives are represented
as a lattice so that the final decision is in-
tegrated into the processing of decoding.
Our translation results improve state-of-
the-art Chinese-English translation sys-
tems on GALE and IWSLT tasks. More-
over, the proposed algorithms can be
applied to statistical machine translation
from Chinese to any other languages.

1 Introduction
In Chinese texts, sentences are written in the form
of a sequence of Chinese characters, and words
composed of single or multiple characters are not
separated by delimiters. This is different from
most European languages and poses a challenge
in natural language processing tasks, such as ma-
chine translation. The conventional way is to seg-
ment the Chinese character sequence into Chinese
“words”. Finding proper word boundaries in a se-
quence of Chinese characters is the so-called Chi-
nese word segmentation (CWS) problem.

The Chinese word segmentation performance is
usually evaluated by precision, which is calculated

based on how well the segmented text matches the
reference text. However, in our experiments we
observed that the correlation of word segmentation
and translation error rates are not close enough.
Therefore, we explore the idea that the best seg-
mentation depends on the task and concentrate on
developing a CWS method for machine transla-
tion. For machine translation, intuitively, the best
Chinese words should be the units that provide the
best word alignment and lead to the best transla-
tion performance.

The common solution has been to segment the
Chinese text explicitly and to perform a standard
training and translation once the words are fixed.
There are many ways to recognize word bound-
aries. The simplest method is to use the maximum
matching. Characters in a sequence are checked
whether they match a word in the dictionary from
left to right; firstly to the longer words then to the
shorter words. This method is rather naive, be-
cause words with equal lengths are treated in the
same way. Hence, statistical methods are intro-
duced to estimate model parameters on the train-
ing data. Under various statistical methods, the N-
gram based Chinese word segmentation is widely
applied, such as in (Chen et al., 2005), (Wang and
Liu, 2005), (LDC, 2003), serving as our baseline
segmentation method. HMM is another statistical
model to perform word segmentation. In (Zhang
and Malik, 2003) features derived from name en-
tity and lexicon etc. are considered. Bigram
class dependency and word conditional probability
are taken into account in the HMM based frame-
work to search for optimal segmentation bound-
aries. Maximum entropy (Low et al., 2005) is
a similar approach that combines user defined fea-
tures and segmentation decisions. Single charac-
ter words, characters in the middle, at the begin-
ning and at the end of a word constitute four basic
classes of the model. (Andrew, 2006) employed
a conditional random field (CRF) model for se-
quence segmentation to include various informa-
tion for a segmentation decision.

Nonetheless, significant improvements in trans-
lation performance have not yet been shown to
result from using these more sophisticated CWS
methods, due to the following two reasons: 1.
The segmentations may be erroneous, because the



context varies. 2. The best segmentation for a
given character sequence also depends on its trans-
lation. For a destined character sequence the ’cor-
rect’ segmentation is not universal, but we need to
consider the contexts and the language to be trans-
lated into. In standard approaches word segmenta-
tion is performed previously and independently on
the translation system. Segmentation and align-
ment of words are two separate processes, though
they actually influence each other.

The main characteristic of our Chinese word
segmentation method is that our segmentation
model is designed for and integrated into the ma-
chine translation system. We renovate the triv-
ial approach segmenting words in the preprocess-
ing but put the word segmentation into the word
alignment training as well as decoding for the
best translation. Translation on Chinese charac-
ters is feasible therefore as segmentation process
is pushed to the translation.

There are two major problems to be solved for
Chinese word segmentation: the first one is how
to train the word segmentation model; the second
one is how to perform the segmentation on a test
corpus using the trained model.

For the model training, we will present two dif-
ferent approaches, both employing the bilingual
information: the alignment derived segmentation
in Section 4 and the semi-supervised CWS in Sec-
tion 5. The previous one is easier to implement
with an initialization of the alignment between
Chinese characters and English words; the latter
one is more refined with an initialization of an uni-
gram word segmentation with LDC lexicon. These
two methods are parallel. Although we can initial-
ize the latter one with the previous one, we did
not apply it for simplicity. In alignment derived
segmentation a monolingual lexicon is extracted
from single-best alignments of Chinese characters
and English words, where bilingual and context
information are employed. However, the single-
best alignments may contain errors, thus we fur-
ther refined the model into an semi-supervised
method. Word segmentation and alignment are
trained jointly considering both monolingual and
bilingual information, in order to derive a segmen-
tation suitable for machine translation, see (Xu et
al., 2008). New word entries and their distribu-
tions are introduced automatically using Dirichlet
process. Our experiments on both large (GALE)
and small (IWSLT) data tracks show improve-
ments over the state-of-the-art machine translation
systems with respect to translation performance.

Once the segmentation model, more precisely
the lexicon is obtained, we need to solve the sec-
ond problem, finding best Chinese word segmen-
tation on a test corpus. We can use either an un-
igram word segmenter (as standard approach) or
the word segmentation lattice in Section 6 to per-

form Chinese word segmentation on the test cor-
pus. With the lattice segmentation, translation is
carried out on character level in decoding, and
multiple segmentations are represented as a lat-
tice so that segmentation decisions are integrated
into the search for the best translation. Similar ap-
proaches were applied in speech translation, e.g.
(Ney, 1999), where speech recognition and text
translation are combined by using the recognition
lattices. We also weight the different segmenta-
tions with a language model trained on the Chi-
nese corpus at the word level. Weighting the word
segmentation by language model cost was intro-
duced in (Luo and Roukos, 1996). Our experi-
ments on Chinese-to-English translation show that
our method improves the performance of a state-
of-the-art machine translation system.

In the following context, we will first introduce
the definition of Chinese word segmentation in
Section 2, along with the notations for later sec-
tions and the baseline approach ngram segmenta-
tion as in Section 3. As chief contents, the align-
ment derived segmentation and semi-supervised
CWS method is described in Section 4 and 5 re-
spectively, and the translation on segmentation lat-
tices is discussed in Section 6. Finally, translation
experiments are shown in Section 7.

2 Definition

In statistical machine translation we are
given a Chinese sentence in characters
cK1 = c1c2...ck...cK (k ∈ 1, 2, ..,K), which
is to be translated into an English sentence
eI1 = e1e2...ei...eI (i ∈ 1, 2, .., I), where K and I
is the length of Chinese sentence in characters and
English sentence in words respectively.

In order to obtain a more adequate mapping be-
tween Chinese and English translation units, cK1
is usually segmented into words. The positions
of Chinese word boundaries on a character se-
quence cK1 is indicated with k0 ≡ 0 and kJ1 =
k1k2...kj ...kJ (j ∈ 1, 2, .., J), where kJ ≡ K,
kj ∈ {1, 2, ...K} and kj−1 < kj , and J is the
number of Chinese words for cK1 . They store the
information where the Chinese words are delim-
ited in a sentence. kj indicates the j-th word seg-
mentation boundary taking place after (on the right
side of) the Chinese character ckj

and before the
character ckj+1, when 1 ≤ j < J . k0 is a bound-
ary before (on the left side of) the first Chinese
character c1, which is defined as 0 constantly, and
kJ is always after the last Chinese character cK
and therefore equals K.

Given a sequence of Chinese characters cK1 and
its positions of segmentation boundaries kJ1 , a sen-
tence can also be represented in the form of a
sequence of Chinese words fJ1 = f1f2...fj ...fJ



(j ∈ 1, 2, .., J), and each individual Chinese word
fj is defined as

fj = ckj−1+1..ckj
= c

kj

kj−1+1.

fJ1 is composed of two information sources, the
character sequence and its word segmentation.

Table 1: An example for the definition of Chinese
words and word segmentations

characters B / m � ]

cK1 c1 c2 c3 c4 c5
segmentation boundaries B / m � ]

kJ1 k1 = 2 k2 = 3 k3 = 5
characters into words c1c2 c3 c4c5

words B/ m �]
fJ1 f1 f2 f3

An example is illustrated in Table 1. The sen-
tence B/m�] contains five Chinese charac-
ters (K = 5), where c1 denotesB, c2 denotes/,
etc. The first word segmentation boundary takes
place after the second Chinese character (k1 = 2),
and the second and third boundary is after the third
and fifth character respectively (k2 = 3, k3 = 5),
which indicates thatB(c1) and/(c2) compose to-
gether a wordB/(f1). m(f2) is a single charac-
ter word. �](c4c5) is the third word (f3) of this
sentence.

3 Ngram segmentation

Table 2: Manual Chinese word lexicon
Word B / m B/ ...
Frequency 3465 22 588 367 ...

The simplest and widely applied automatic seg-
mentation tool is based on an unigram segmenta-
tion, which requires a manual lexicon containing
a list of Chinese words and their frequencies, as
shown in Table 2. The lexicon and frequencies can
be obtained using manually annotated data, e.g.
the LDC (LDC, 2003) lexicon or extracted from
the alignment of the training corpora (Xu et al.,
2004) to be discussed in Section 4.

We need to maximize the probability of a sen-
tence considering all word segmentation alterna-
tives. Assuming each Chinese word in the sen-
tence is independently distributed, we are inter-
ested to know how to put the word delimiters prop-
erly so that the product of probabilities of all words
is maximized:

k̂Ĵ1 = argmax
kJ
1 ,J

J∏
j=1

Pr(ckj

kj−1+1) (1)

= argmax
kJ
1 ,J

J∏
j=1

Pr(ckj

kj−1
|ckj−1−n

kj−2−n+1, .., c
kj−1

kj−2+1)

Pr(ckj

kj−1+1) is the probability of a word fj

which is a sequence of characters ckj

kj−1+1 with a
boundary after the kj−1-th character and before the
kj-th character in the sentence. Taking the word
dependency into account and using the concept of
the language model, we obtain an ngram model for
Chinese word segmentation of order n. The dy-
namic programming algorithm is used to find the
word sequence which has the highest multiplier
product of word probabilities.

Another instance of this type segmenter is the
LDC tool, which is also based on unigram seg-
mentation but with additional text normalizations.
The next word is selected from the longest phrase.
More details can be found on the LDC web
pages (LDC, 2003).

The unigram Chinese word segmentation
method is so far the most commonly applied
method in machine translation, but it has prob-
lems: First, finding the maximum mutual word
probabilities does not guarantee the best combina-
tion among those words, so that the segmentation
may contain errors; second, a more accurate word
segmentation does not always lead to a great im-
provement in translation performance. The ’cor-
rect’ segmentation for one character sequence is
not universal but depends on the Chinese context
and the destination language. For example, �
(paper) and ] (card) can be separated or com-
posed into one word �] (cards). As �] does
not exist in the manual lexicon, it cannot be gener-
ated by this unigram method.

4 Alignment derived segmentation

Table 3: An example of an alignment matrix be-
tween Chinese characters and English words. A
gray box indicates a single-best (Viterbi) word
alignment.

cards
play
children

B / m � ]

We will introduce our first word segmentation
approach, namely alignment derived segmenta-
tion. In statistical machine translation we have a



bilingual corpus to obtain the Chinese word seg-
mentation in the following way (Xu et al., 2004):

First, we train the statistical translation mod-
els with the bilingual corpus using GIZA++ (Och,
2000) tool. There is no word segmentation per-
formed on Chinese texts, and each Chinese char-
acter is interpreted as a word.

As a result of this alignment training, we ob-
tain for each sentence pair a mapping of Chinese
characters to the corresponding English words, i.e.
the single-best word alignment between Chinese
characters and English words. Such an alignment
is represented as a binary matrix with K · I ele-
ments. An example is shown in Table 3, where a
Chinese training sentence in characters is plotted
along the horizontal axis and its English transla-
tion sentence in words along the vertical axis. The
black boxes show the best alignments for this sen-
tence pair. In this example the first two Chinese
characters are aligned to ’children’, the next one
is aligned to ’play’, and the last two tokens are
aligned to ’cards’.

Based on this information, we can generate a
Chinese word list with each entry composed of one
or more Chinese characters, which are aligned into
one English word in the word alignment matrix. If
we calculate the frequencies for every word, the
distribution can be obtained, too. We accumulate
the frequency of each entry over all sentence pairs
in the training corpus. For instance, if we only
have one sentence pair as in Table 3, we obtain
words ’B/’, ’m’ and ’�]’, each of them has an
absolute frequency of one and a relative frequency
of 1

3 . With this self-learned lexicon we use a seg-
mentation tool, such as an unigram segmenter in
Section 3 to obtain a segmented Chinese text. Fi-
nally, we retrain our translation system with the
segmented corpus.

This lexicon shows the most probable situa-
tion of Chinese characters occurrence, if they are
combined or used alone, according to the single-
best alignment. The extraction method differs
from other self-learned methods because it uses
the bilingual training corpus instead of the mono-
lingual corpus such as in (Sproat and Shih, 1990).
As we are more interested in the relationship be-
tween the languages, this method is more suitable
for the machine translation application.

The central idea of our lexicon learning method
is: A contiguous sequence of Chinese characters
constitute a Chinese word, if they are aligned to the
same English word. Using this idea and the bilin-
gual corpus, we can automatically generate a Chi-
nese lexicon. As a conclusion, our ’learned trans-
lation with learned segmentation’ derived from
character based word alignment consists of three
steps:

1. The input is a sequence of Chinese characters

without segmentation. After the training us-
ing GIZA++ , we extract a monolingual Chi-
nese dictionary from the alignment.

2. Using this learned dictionary we segment the
sequence of Chinese characters into words.
In other words, the unigram method is used,
but the manual lexicon is replaced by the
learned lexicon.

3. Based on this word segmentation, we perform
another training using GIZA++ . Then, after
training the models IBM1, HMM and IBM4,
we extract bilingual word groups, which are
referred to as phrase based translation.

5 Semi-supervised Chinese word
segmentation

The alignment derived segmentation models the
word distributions in the lexicon using Viterbi
alignment information. It uses the bilingual in-
formation and is trained with the respect to the
translation performance. But the erroneous single-
best alignment can result in the incorrect word seg-
mentation, which may lead to sub-optimal trans-
lation results. Therefore, we further propose an-
other Chinese word segmentation model in train-
ing, which is more refined and learns both Chi-
nese word entries and their distributions to gener-
ate a dynamic lexicon. New words are introduced
with a prior distribution using the Dirichlet pro-
cess. Chinese word segmentation and word align-
ment, which have an influence and effect on each
other, are trained simultaneously.

This method is semi-supervised, namely, Chi-
nese word segmentation is jointly trained with
word alignment given an initialized word segmen-
tation and alignment. Motivated by (Goldwa-
ter et al., 2006), we employ Dirichlet process to
introduce new words to the lexicon with a prior
distribution. In addition, we describe a genera-
tive model which consists of a word model and
two alignment models, representing the monolin-
gual and bilingual information respectively. In our
methods, we first initialize Chinese text using a un-
igram segmenter and then learn new word types
and word distributions, which are suitable for ma-
chine translation.

The training and translation processes for semi-
supervised Chinese word segmentation are as fol-
lows: The inputs to the system are the bilingual
training data including Chinese sentences in char-
acters and its English translations in words, a man-
ual Chinese word lexicon, such as LDC lexicon, as
well as a test corpus on the character level. First,
we segment the Chinese training corpus in char-
acters with an unigram word segmentation using
the manual lexicon, then the word alignment and
Chinese word segmentation are jointly trained as



output using semi-supervised Chinese word seg-
mentation. By counting the Chinese word frequen-
cies, we easily obtain an automatic generated lex-
icon. A combined lexicon with the automatic and
manual lexicons is then applied to perform an un-
igram segmentation on the test corpus. The Chi-
nese word segmentation on the test corpus is an-
other output from our segmentation system.

We apply Gibbs sampling for model training.
The Gibbs sampling algorithm generates an in-
stance from the distribution of each variable in
turn, conditional on the current values of the other
variables. This characteristic is particular inter-
esting if the Chinese words are unknown and to
be learned. There are approximately 90K Chinese
characters and 7000 commonly in use; any of these
characters can be elements of a word. Usually, a
Chinese word is composed of one to four charac-
ters. The number of Chinese words is calculated as
7000 + 70002 + 70003 + 70004, which is difficult
to be fixed before translation. If there is no previ-
ously defined lexicon, the number of all possible
segmentations for a sequence of characters cK1 is
2K−1. That means that the complexity is expo-
nential in the order of character sequence length.
Therefore, we have to approximate the space of all
possible derivations in some way: We can define
that a word contains at most four characters, the
complexity goes down to polynomial, but it is still
a high order polynomial; we can perform a stan-
dard beam search to prune low cost paths. As an
alternative to draw a space with all segmentation
derivations for one sentence, we imply the Gibbs
sampling algorithm, which learns each parameter
value conditioning on all other parameter values
in turn. (Blunsom and Osborne, 2008) showed
that the search spaces produced by the sampling
approach occupied roughly half the disc space as
those produced by the beam search with similar
results.

5.1 Unigram Dirichlet Process model for
CWS

The simplest version of this model is based on
an unigram Dirichlet Process (DP) model as in-
troduced by (Goldwater et al., 2006), using only
monolingual information. Different from a stan-
dard unigram model for CWS, our model can in-
troduce new Chinese word types and learns word
distributions automatically from unlabeled data.
On the contrary, the conventional approach applies
a manual lexicon containing fixed Chinese words
and their frequencies as distributions.

According to this model, a corpus of Chinese
words f1, . . . fj , . . . is generated based on Dirich-
let Process. Each random variable fj is drawn in-
dependently and identically from G , where G is
a distribution over words drawn from a Dirichlet

Process prior with base measure P0 and concen-
tration parameter α.

We never estimate G explicitly but instead
integrate over its possible values and perform
Bayesian inference. It is easy to compute the
probability of a Chinese word given a set of al-
ready generated words, while integrating over G.
This is done by casting a Chinese word genera-
tion as a Chinese restaurant process (CRP) (Al-
dous, 1985), i.e. a restaurant with an infinite num-
ber of tables (approximately corresponding to Chi-
nese word types), each table with infinite number
of seats (approximately corresponding to Chinese
word frequencies).

The Dirichlet Process model can be viewed in-
tuitively as a cache model (Goldwater et al., 2006).
Each word fl in the corpus is either retrieved from
a cache or generated anew given the previously ob-
served words f−l:

P (fl|f−l) =
N(fl)+αP0(fl)

N + α
, (2)

where N(fl) is the number of Chinese words fl in
the previous context. N is the total number of Chi-
nese words, P0 is the base probability over words,
and α influences the probability of introducing a
new word at each step and controls the size of the
lexicon. This so-called rich-get-richer process cre-
ates a Zipf distribution. The probability of gener-
ating a word from the cache increases as more in-
stances of that word are seen. α controls the num-
ber of word types, i.e. size of the lexicon. It is the
total probability to generate any new words. P0
defines a probability distribution over new words,
i.e. how likely a sequence of Chinese characters
forms a word.

For the base distribution P0, which governs the
generation of new words, we use the following dis-
tribution (called the spelling model):

P0(f) = P (L) · P (f |L) (3)

=
κL

L!
e−κ · (1

v
)L, (4)

where L is the number of Chinese characters of
word f . We decompose the spelling model into
a word length model P (L) and a word model de-
pending on its length P (f |L). The length model
follows a Poisson distribution, and the word model
is a uniform distribution over all words given a
length. Therefore, Equation 3 is extended to Equa-
tion 4. v is the number of characters in the docu-
ment, i.e. character vocabulary size. We note that
the sum of probabilities ( 1

v )
L over all words with a

length L equals to one, because there are vL words
with length L, and each word is equally distributed



with a probability 1
v

L, so (vL)(( 1
v )
L) = 1. In our

experiments we used κ = 2 and α = 0.3.

5.2 Generative model
As shown in Figure 4, the generative model as-
sumes that a corpus of parallel sentences (c1K ,e1I )
is generated along with a hidden sequence of Chi-
nese words f1

J and a hidden word alignment b1I
for every sentence. The alignment indicates the
aligned Chinese word fbi for each English word
ei, where f0 indicates a special null word as in the
IBM models.

The joint probability of the observations
(c1K , eI1) can be obtained by summing up all pos-
sible values of the hidden variables kJ1 and bI1. The
model probability Pr(cK1 , e

I
1) can be seen as the

sum of all possible Chinese word segmentations
kJ1 of the character sequence cK1 :

Pr(cK1 , e
I
1)

=
∑
kJ
1

∑
bI1

Pr(cK1 , e
I
1, k

J
1 , b

I
1) (5)

=
∑
kJ
1

∑
bI1

Pr(fJ1 )Pr(eI1, b
I
1|fJ1 ) (6)

Without assuming any special form for the prob-
ability of a sentence pair along with hidden vari-
ables, we can factor it into a monolingual Chi-
nese sentence probability and a bilingual transla-
tion probability. As fJ1 represents the information
of cK1 and kJ1 we can rewrite Equation 5 into Equa-
tion 6. Therefore, the observations (cK1 , e

I
1) are as-

sumed to be generated in three steps:

1. Word sequence fJ1 is generated via a word
model Pr(fJ1 ).

2. Chinese character sequence is generated from
f via a spelling model P (f).

3. English words are generated via a translation
model Pr(eI1|fJ1 ).

In the following paragraphs we will describe
the modeling assumptions behind the monolingual
Chinese sentence model including word, spelling
models and the translation model, respectively.

5.2.1 Monolingual Chinese sentence model
We use the Dirichlet Process unigram word

model. In this model the parameters of a distribu-
tion over words G are first drawn from the Dirich-
let prior DP (α, P0). Then words are indepen-
dently generated according to G. The probability
of a sequence of Chinese words in a sentence is
thus:

Pr(fJ1 ) =
J∏
j=1

PG(fj), (7)

where P0(fj) is further explained by the
spelling model.

5.2.2 Translation model
We employ the Dirichlet process inverse IBM

model 1 to generate English words and alignments
given the Chinese words. In this model, for every
Chinese word f (including the null word), a distri-
bution over English wordsGf is drawn firstly from
a Dirichlet Process prior DP (α, P0(e)), where
P0(e) we used the empirical distribution over En-
glish words in the parallel data. Then, given these
parameters, the probability of an English sentence
and alignment given a Chinese sentence (sequence
of words) is given by:

P (eI1, b
I
1|fJ1 ) =

I∏
i=1

1
J + 1

PGfbi
(ei|fbi),

where ei is distributed according to Gfbi
. This

is the same model form as inverse IBM model 1.
We have placed Dirichlet Process priors on the
Chinese-word specific distributions over English
words. 1

In practice, we observed that using a word-
alignment model in one direction is not sufficient.
We then added a factor to our model which in-
cludes word alignment in the other direction. Such
combinations of models in both directions are
widely used for phrase extraction (Och and Ney,
2004).

Therefore, we also used a translation model
in the other direction, , i.e. a Dirichlet Process
IBM model 1. We ignore the detailed descrip-
tion here, because the calculation is the same as
that of the inverse IBM model 1. According to
this model, for every English word e (including
the null word), a distribution over Chinese words
Ge is first drawn from a Dirichlet Process prior
DP (α, P0(f)). Here, for the base distribution
P0(f) we used the same spelling model as for the
monolingual unigram Dirichlet Process prior.

5.3 Final model
We put the monolingual model and the translation
models in both directions together into a single
model, where each of the component models is
weighted by a scaling factor. This is similar to a
maximum entropy model. We fit the weights of

1fbi is the Chinese word aligned to ei and Gfbi
is the

distribution over English words conditioned on the word fbi .
Similarly, eaj is the English word aligned to fj in the other di-
rection and Geaj

is the distribution over Chinese words con-
ditioned on eaj .



Table 4: Observations and hidden variables of the generative model for Chinese word segmentation.

Symbol Abb. Example
Observations
Chinese sequence in characters cK1 C B/m�]
English sentence eI1 E Children play cards
Hidden variables
Alignment normal aJ1 A e.g. (cards,�),(cards,]),..
Alignment inverse bI1 B e.g. (�,cards),(], cards)
Segmentation (Chinese sequence in words) fJ1 F e.g. B/→m→�]

the sub-models on a development set by maximiz-
ing the BLEU score of the final translation.

We used three features derived from Equation 7
and equations in Section 5.2.2.

The maximum entropy model can be viewed as
a weighted linear combination of the log proba-
bilities of sub-models. The weights that are opti-
mized on development datasets have empirical jus-
tifications. Since different sub-models have been
trained on different datasets, their dynamic value
ranges can be so different that it is inappropriate to
combine their log probabilities through simple ad-
dition. Moreover, for instance, some models may
be poorly estimated due to the lack of large amount
of training data. Therefore, empirical results have
demonstrated that the use of scaling factors that
reflect the relative contribution of different sub-
models often improves the performance. The final
model used in our experiments is

Pr(cK1 , e
I
1, f

J
1 , a

J
1 , b

I
1) (8)

≈ 1
Z
Pr(fJ1 )

λ1 · Pr(eI1, bI1|fJ1 )
λ2

·Pr(fJ1 , aJ1 |eI1)
λ3
,

where Z is the normalization factor and a is the
alignment for Chinese to English translation.

In practice, we do not re-normalize the proba-
bilities and our model is thus deficient because it
does not sum to 1 over valid observations. How-
ever, we observed that the model worked very well
in our experiments. Similar deficient models have
been used very successfully before, for example in
the IBM models 3–6 (Och, 1999).

5.4 Gibbs sampling training
Using our generative model we would like to
choose the most likely word segmentation given
the observed pairs of Chinese-English sentences.

It is generally impossible to find the most likely
segmentation according to our Bayesian model us-
ing exact inference, because the hidden variables
do not allow exact computation of the integrals.
Nonetheless, it is possible to define algorithms us-
ing Markov chain Monte Carlo (MCMC) that pro-

duce a stream of samples from the posterior dis-
tribution of the hidden variables given the obser-
vations. We applied the Gibbs sampler (Geman
and Geman, 1984), one of the simplest MCMC
methods, in which transitions between states of the
Markov chain result from sampling each compo-
nent of the state conditioned on the current value
of all other variables.

In our problem the observations are D =
(d1, ..ds, .., dS), where ds=(cK1 , e

I
1) indicates a

bilingual sentence pair, the hidden variables are
the word segmentations fJ1 and the alignments in
two directions aJ1 and bI1.

Gibbs sampling is an iterative procedure that
samples variables given the current values of all
other variables. Our Gibbs sampler for Chinese
word segmentation works as follows: for each step
we take a single possible boundary point by fixing
other segmentations and alignments, then compare
hypotheses considering this boundary and the re-
lated alignments. After sampling by using the pos-
terior probabilities of each candidate, we choose
one of the candidates and perform the same opera-
tion for the next position.

To perform Gibbs sampling we start with an
initial word segmentation and initial word align-
ments. We re-sample iteratively the word segmen-
tation and alignments according to our model of
Equation 8.

For example, we are interested in determining
the word boundary after �in the sentence B/
m�]. We only use the monolingual model for
convenience. We suppose that�]are two words
from the initialization. N is the number of words
in Chinese corpus. First, we decrease the related
counts N, N(�), N(]), N(�, Children), .. with
one. After that, we calculate the probabilities P(�
]|..), P(�]|..), ... again. Now, we compare the
P(�]|..) and P(�]|..) using sampling, i.e. af-
ter the normalization on the probabilities: P ′(�
]|..) and P ′(�]|..), we select a random num-
ber x in (0, 1), If x in (0, P ′(�]|..)), we choose
�], otherwise, we choose � ]. That means
higher probability segmentation is more likely to



Figure 1: Case I, transition from a no-boundary to
a boundary state, f to f ′f ′′.

Figure 2: Case II, transition from a boundary to a
no-boundary state, f ′f ′′ to f .

be chosen. Finally, we increase the corresponding
counts N, N(�]), N(�], Children), N(�],
play), N(�], card),.. with one. This is an itera-
tive process going over all positions in a document
until the segmentation result converges.

We only allow limited modifications to the ini-
tial word alignments for reasons of efficiency.
Thus, we only use models derived from IBM-1 (in-
stead of IBM-4) for comparing different word seg-
mentations and not for large-scale modification of
the word alignment. IBM model 4 from GIZA++
is an improved model in comparison to IBM model
1 that we use. On the other hand, re-sampling the
segmentation causes re-linking alignment points to
parts or groups of the original words.

Hence, we organize our sampling process
around possible word boundaries. For each char-
acter ck in each sentence, we consider two alter-
native segmentations: ck+ indicates the segmenta-
tion where a boundary exists after ck and ck− in-
dicates the segmentation where no boundary exists
after ck, keeping all other boundaries fixed. Let
f denote the single word spanning character ck if
there is no boundary after it, and f ′,f ′′ denote the
two adjacent words resulting if there is a bound-
ary: f ′ includes ck and f ′′ starts just to the right,
with character ck+1. The introduction of f ′ and
f ′′ leads to P new possible alignments in the E-
to-C direction b+k1, . . . , b

+
kP , such as in Figure 1.

Together with the boundary vs no-boundary state
at each character position, we re-sample a set of
alignment links between English words and any of
the Chinese words f ,f ′, and f ′′, keeping all other
word alignments in the sentence pair fixed. (See
Figures 1 and 2.)

Table 5: General Algorithm of GS for CWS.

Input: D with an initial segmentation and alignments
Output: D with sampled segmentation and alignments
for s = 1 to S : each sentence

for k = 1 to K that ck ∈ ds : each character position
Create P+1 candidates, cba+

k,p and cba−k , where
cba+

k,p: there is a word boundary after ck
cba−k : there is no word boundary after ck

Compute probabilities
P (cba+

k,p|dhsk
−)

P (cba−k |dhsk
−)

Sample boundary and relevant alignments
Update counts

Thus, we consider a set of alternatives for the
boundary after ck and relevant alignment links at
each step in the Gibbs sampler, keeping all other
hidden variables fixed. We need to compute the
probability of each of the alternatives at each step,
given the fixed values of the other hidden vari-
ables.

We introduce some notation to make the presen-
tation easier. For every position k in sentence pair
s, we denote by dhsk− the observations and hid-
den variables for all other sentences than sentence
s, and the observations and hidden variables in-
side sentence s, not involving character position
ck. The fixed variables inside the sentence are the
words not neighboring position k and the align-
ments in both directions to these words.

In the process of sampling we consider a set
of alternatives: segmentation ck+ along with the
product space of relevant alignments in both direc-
tions b+k1, . . . , b

+
kP , and a+

k , and segmentation c−k
along with relevant alignments bk− and a−k . For
brevity, we denote these alternatives by cbak,p

+

and cbak−.
We will describe how we derive the set of alter-

natives in Section 5.5 and how we compute their
probabilities in section 5.6.1.

Table 5 shows schematically one iteration of
Gibbs sampling through the whole training cor-
pus of parallel sentences, where S is the number
of parallel sentences.

5.5 Computing probabilities of alternatives
For the Gibbs sampling algorithm in Table 5, we
need to compute the probability of each alternative
segmentation/alignments, given the fixed values of
the rest of the data dhsk−. The probability of the
hidden variables in the alternatives is proportional
to the joint probability of the hidden variables and
observations, and thus it is sufficient to compute



the probability of the latter. We compute these
probabilities using the Chinese restaurant process
sampling scheme for the Dirichlet Process, thus in-
tegrating over all of the possible values of the dis-
tributions G, Gf and Ge.

Let cbak denote an alternative hypothesis in-
cluding boundary or no boundary at position k,
and relevant alignments to English words in both
directions of the one or two Chinese words result-
ing from the segmentation at k. The probability of
this configuration given by our model is:

P (cbak|dhsk−) ∝ Pm(cbak|dhsk−)λ1 (9)

·Pef (cbak|dhsk−)λ2 · Pfe(cbak|dhsk−)λ3 ,

where Pm(cbak|dhsk−) is the monolingual
word probability, and Pfe(cbak|dhsk−) and
Pef (cbak|dhsk−) are the translation probabilities
in the two directions.

Now we describe the computations of each of
the component probabilities.

5.5.1 Word model probability
The word model probability Pm(cabk|dhsk−)

in Equation 9 is derived from Equations 7 and
2. There are two cases: If the hypothesis spec-
ifies that there is a boundary after character ck,
we need multiply probabilities of the two result-
ing words f ′, and f ′′ using Equations 7; otherwise,
Pm(c+k |dhnk

−) is estimated by the probability of
the single word f . (See the initial states in Figures
1 and 2, respectively.)

In the first case, due to theoretical correctness,
we need to update the countsN andN(f ′′) if com-
puting the probability of the second word, but this
is unlikely to change the behavior of the algorithm
and we kept the counts fixed while computing the
probability of hypotheses for the word and trans-
lation models.

5.5.2 Translation model probability
The translation model probabilities depend on

whether or not there is a segmentation boundary at
ck. They also depend on which English words are
aligned to the relevant Chinese words.

In the first case, we assume that there is a word
boundary in cabk, and that English words {e1} are
aligned to f ′ and words {e2} are aligned to f ′′ in
the E-to-C direction according to the alignment bk,
and that f ′ is aligned to e∗ or f ′′ is aligned to e∗ in
the C-to-E direction according to the alignment ak
(see the initial state in Figure 1). Here, we over-
loaded notations and use bk and ak to indicate the
alignments of the relevant Chinese words at posi-
tion k to any English words. Let I denote the total
number of English words in the sentence, and J+1
denote the number of Chinese words according to
this segmentation. We consider the null words.

We also denote the total number of English words
aligned to either f ′ or f ′′ in the E-to-C direction
by P .

The translation model probability in the E-to-C
direction is thus:

Pef (c+k , bk, ak|dhnk
−) ∝

(
1

J + 2

)P
·
∏
e′

P (e′|f ′, dhnk−)
∏
e′′

P (e′′|f ′′, dhnk−)

Here we compute P (e|f, dhnk−) as:

P (e|f, dhnk−) =
N(e, f) + αP0(e)

N(f) + α
,

where the counts are computed over the fixed as-
signments dhnk−.

The translation probability in the other direction
is computed similarly.

The parameters θ are estimated on-the-fly,
which means updating θ is to update the counts
N(f, e), N , N(e) and N(f) according to our
model. The probabilities are computed if it is
called in the sampling.

5.6 Determining the set of alternative
hypotheses

Sampling on word segmentation can change the
Chinese word and its alignment. Therefore, some
implementation issues need to be addressed to en-
able the algorithm to work properly in our experi-
ments.

5.6.1 How to maintain one-to-many
alignment during sampling?

As mentioned earlier, we consider alternative
alignments which deviate minimally from the cur-
rent alignments and which satisfy the constraints
of the IBM model 1 in both directions. In order
to describe the set of alternatives, we consider two
cases depending on whether there is a boundary at
the current character before sampling at position
k.

Case 1. There is no boundary at ck in the previous
state (see Figure 1).

If there is no boundary at ck, there is a single
word f spanning that position. We denote by {e}
the set of English words aligned to f at that state
in the E-to-C direction and by e∗ the English word
aligned to f in the C-to-E direction. Due to the fact
that every state we consider satisfies the IBM one-
to-many constraints, there is exactly one English
word aligned to f in the C-to-E direction and the
words {e} have no other words aligned to them in
the E-to-C direction.



In this case, we consider as hypothesis cbak−
the same segmentation and alignment as in the pre-
vious state. (see Table 5 for an overview of the
alternative hypotheses.)

We consider M different hypotheses which in-
clude a boundary at k in this case, where M de-
pends on the number of words {e} aligned to f in
the previous state. As we are breaking the word f
into two words f ′ and f ′′ by placing a boundary at
ck, we need to re-align the words {e} to either f ′
or f ′′. Additionally, we need to align f ′ and f ′′ to
English words in the C-to-E direction. The num-
ber of different hypotheses is equal to 2P where
P = |{e}|. These alternatives arise by consider-
ing that each of the words in {e} needs to align to
either f ′ or f ′′, and there are 2P combinations of
these alignments. For example, if {e} = {e1, e2},
after splitting the word f there are four possible
alignments, illustrated in Figure 1: I. (f ′, e1) and
(f ′′, e2), II. (f ′, e2) and (f ′′, e1), III. (f ′, e1) and
(f ′, e2), IV. (f ′′, e1) and (f ′′, e2). For the align-
ment ak in the C-to-E direction, we consider one
option only, in which both resulting words f ′ and
f ′′ align to e∗. These alternatives form cbak,m

+ in
Table 5.

Case 2. There was a boundary at ck in the previous
state (see Figure 2).

In this case, for the hypothesis c+k we only con-
sider one alternative, which is exactly the same as
the assignment of segmentation and alignments in
the previous state. Thus we have P = 1 in Table 5.

Let f ′ and f ′′ denote the two words at position
k in the previous state, {e′} and {e′′} denote the
sets of English words aligned to them in the E-to-
C direction, respectively, and e∗′ and e∗′′ denote
the English words aligned to f ′ and f ′′ in the C-
to-E direction.

We only consider one hypothesis cbak− where
there is no boundary at ck. In this hypothesis, there
is a single word f = f ′f ′′ spanning position k,
and all words {e′} ∪ {e′′} align to f in the E-to-C
direction. For the C-to-E direction we consider the
’better’ one of the alignments (f, e′∗) and (f, e′′∗)
where the better alignment is defined as the one
having higher probability according to the C-to-E
word translation probabilities.

5.7 Complete segmentation algorithm
So far, we have described how we re-sample word
segmentation and alignments according to our
model, starting from an initial segmentation and
alignments from GIZA++. Putting these pieces to-
gether, we get the algorithm that is summarized in
Table 5.

We figured out that we can further improve per-
formance by aligning repeatedly the corpus using

GIZA++. We do so after deriving a new seg-
mentation using our model. The complete algo-
rithm, which includes this step, is shown in Table
6, where Ft indicates the word segmentation at it-
eration t andAt denotes the GIZA++ corpus align-
ment in both directions. The GS re-segmentation
step is done according to the algorithm in Table 5.

Table 6: Complete algorithm of Gibbs sampler for
CWS including alignment models. The observa-
tions are D = (d1, ..ds, .., dS), where ds=(cK1 , e

I
1)

indicates a bilingual sentence pair. Hidden vari-
ables Ft and At is the word segmentation and
alignment of the corpus in the t-th iteration respec-
tively.

Input: D, F0
Output: AT , FT
for t = 1 to T : each iteration

Run GIZA++ on (D,Ft−1) to obtain At
Run GS on (D,Ft−1, At) to obtain Ft

Using this algorithm, we obtain a new segmen-
tation of the Chinese data and train the transla-
tion models using this segmentation as in the base-
line machine translation system. To segment the
test data for translation, we use a unigram model,
trained with maximum likelihood estimation of the
final segmentation of the training corpus FT .

6 Integrated word segmentation in
search

We described the alignment derived and semi-
supervised Chinese word segmentation methods in
Section 4 and 5, where the word segmentation
is learned during the training of the word align-
ment. However, a test corpus is still processed
using a unigram segmenter, which does not guar-
antee optimal segmentations as addressed in Sec-
tion 1. For instance,B/ and/ can both mean
’children’. The first one is used more often. There-
fore, a segmenter usually puts both characters to-
gether rather than separating them. But if only/,
but notB/, appears in the training corpus,B/
in the test corpus should be broken into two words,
so that / can be recognized and translated into
’children’.

Whenever inconsistencies show up between the
expressions in training and test data, considering
segmentation alternatives is a good way to adapt
the writing style of the test text to that of the train-
ing text. Hence, a so-called ’integrated word seg-
mentation’ will be described in detail in this sec-
tion, referring to the paper of (Xu et al., 2005a).
The algorithm works as follows: Given a set of
character sequences as the input text, we take all
possible segmentations of one sentence into ac-
count and integrate the segmentation decision into



the search for the translation. Different segmenta-
tion possibilities represented as a lattice instead of
a single segmentation are translated, and the seg-
mentation decision is only taken during the search
for the best translation.

In the conventional method only a single-best
word segmentation is employed in the search for
the best translation. This approach is not ideal
because the segmentation may not be optimal for
these translations given the training data segmen-
tation. Making hard decisions in word segmenta-
tion may lead to loosing Chinese words that can
contribute to find the correct translations. Hence,
for one input sentence, we take all possible seg-
mentations into account and represent them as a
lattice. The input to the translation system is then
a set of lattices instead of the segmented text. In
the integrated segmentation, the search decision of
the word segmentation is combined with the trans-
lation decision as a global decision. The best seg-
mentation of a sentence is only selected while the
translation is generated. Using this method, by
giving a segmented training corpus, we are able
to translate any character-based Chinese text, and
it even outperforms a standard approach with man-
ually segmented input text. The comparison of the
results will be shown in the coming sections.

6.1 Integrated Chinese word segmentation
model

We take the notation in Section 2. In the conven-
tional approach the best translation of cK1 can be
performed by first finding the best segmentation
as in Equation 1, then searching for the best trans-
lation given fixed word segmentation:

êÎ1 = argmax
eI
1

{
Pr(eI1|cK1 , k̂Ĵ1 )

}
(10)

However, in the transfer of the single-best seg-
mentation from Equation 1 to Equation 10 some
segmentations that are potentially optimal for the
translation may be lost. Therefore, we combine
the two steps. The search is then rewritten as:

êÎ1 =argmax
I,eI

1

{
Pr(eI1|cK1 )

}
=argmax

I,eI
1

∑
kJ
1 ,J

Pr(kJ1 , e
I
1|cK1 )


∼=argmax

I,eI
1

{
max
kJ
1 ,J

{
Pr(kJ1 |cK1 )Pr(eI1|cK1 , kJ1 )

}}

We optimize the segmentation boundaries kJ1 to
achieve the best translation directly. In this way,
the segmentation model and the translation model
are combined into one model. The global decision

on Chinese word segmentation and translation are
performed together.

6.2 Constructing segmentation lattices
To perform the lattices translation we introduce the
weighted finite-state acceptor (Kanthak and Ney,
2004). Now, we will take a short sentence as an
example and simulate the segmentation process.
The Chinese sentence is selected from the (IWSLT,
2005) development corpus, ’óý°Í®~åC
�?’, which consists of nine characters including a
punctuation mark.

There are many approaches to build a segmen-
tation lattice. The aim of the lattice construction is
on one hand allowing word segmentation alterna-
tives as candidates for translation and on the other
hand avoiding too many ambiguities so that seg-
mentations leading to optimal translations can al-
ways be preferred.

The simplest lattices are linear constructed
namely a word sequence is taken as the only path
in the lattice, and each word marks the input la-
bel on the succeeding arcs in its sequential order,
which is equivalent to a single-best translation.

In order to introduce segmentation alternatives
N-best word segmentations instead of the single
best segmentation are used in the translation. Chi-
nese texts processed using different word segmen-
tation methods are concatenated one after another
to train the word alignment models. A segmenta-
tion lattice offers multiple paths with different seg-
mentation possibilities letting the decoder take the
final decision on the optimal word boundaries.

If vocabulary of Chinese words is given, it is
possible to construct a lattice with all possible seg-
mentations for a sentence. Allowing all alterna-
tive word segmentations tends to be a good idea,
if several segmentations are not sufficient to detect
proper words that are consistent with the training
texts. This is realized by using the operator ’com-
position’ under the concept of finite state acceptor
introduced in the beginning of Section 6.2.

We generate the segmentation lattice with the
following steps:

1. First, we make a word list from the vocab-
ulary of the Chinese training corpus which
contains all the entries that could be trans-
lated. Each word in the list is mapped by its
characters to be consistent with the input of
an unsegmented text. There may be several
mapped words for one character sequence.
In order to avoid the problem of the unknown
characters from the unsegmented corpus, the
additional characters from the test corpus are
also added to the word list.

2. We convert the mapping of the word list into
a finite-state transducer for segmentation, as



shown in Figure 3. Here the input labels are
the characters from the test corpus, and the
output labels are Chinese words to be trans-
lated by the translation system. The state 0 is
the start and end state.

Figure 3: Segmentation transducer.

3. The input character sequence is represented
as a linear acceptor in the same way of the
single-best segmentation.

4. The linear automata is composed with the
segmentation transducer in Figure 3. The re-
sult is a lattice which represents all possible
segmentations of this sentence as shown in
Figure 4. Note that the alphabet in the third
step is a subset of the input alphabet in Figure
3, because the unknown characters are added
as single words in the word list.

5. Now we get a new finite-state acceptor repre-
senting all the alternatives of different word
segmentations. We only need to read the seg-
mentation lattice in Figure 4 to have an inte-
grated word segmentation in the translation.

6.3 Weighting segmentation lattices
The availability of introducing segmentation alter-
natives is based on the assumption that the decoder
is ’strong’ enough to choose the right segmenta-
tion using the translation model costs. However,
if there are ambiguities, the decoder might only
prefer a path with lower translation costs without
considering any context information. As a result,
translations differ to a great extent in comparison
to the original text. Therefore, we discuss possible
features to evaluate different segmentations in this
sub-section. Paths in a lattice are weighted by fea-
ture costs. Less appeared word segmentations are
penalized and more occurred word segmentations
gain priority. In this way features in the segmenta-
tion lattice and the decoder contribute both to find
the best segmentation results.

We will describe two models to weight lattice
paths. The first one is the length model based on
the observation that single character words are of-
ten chosen without context meanings. The other

one is a language model measured on the Chinese
training text. A unigram language model gives pri-
orities to frequent words used in the training data,
and higher order language models also capture the
source context information for decisions.

A word segmentation model represents the flu-
ency of a Chinese word sequence and can be built
as an n-gram language model of the word-based
text. We trained the language model on the Chi-
nese training corpus with the SRILM toolkit (Stol-
cke, 2002) and used the modified Kneser-Ney dis-
counting. To combine the segmentation lattice
with the word based language model we simply
transform the language model into a finite-state
transducer and compose the lattice with it. Note
that after inserting the weights the number of states
and arcs in a lattice may increase because of the
language model histories.

7 Translation experiments

In this work experiments are performed on two
types of datasets: a small data track, where the
training corpus is rather clean and contains less
than ten thousand words, which is efficient to test
the translation algorithms on sparse data; a large
data track, where the best translation system is ex-
pected, the bilingual training corpus contains hun-
dreds of million words, and the monolingual En-
glish data can obtain trillions of words.

We take the IWSLT (International Workshop on
Spoken Language Translation) task for the small
data track. The IWSLT organization holds an an-
nual evaluation campaign that is carried out us-
ing a multilingual speech corpus on a small data
track. The provided Basic Travel Expression Cor-
pus (BTEC) (Takezawa et al., 2002) is a multilin-
gual speech corpus which contains tourism-related
sentences similar to those that are found in phrase
books.

After the tokenization and automatic sentence
segmentation, the training corpus nearly contains
43K bilingual sentences for each language as
shown in Table 7. We calculated the number of
words and the vocabulary size as well as the num-
ber of singletons of the corpus.

As shown in Table 7, we used three test sets
from (IWSLT, 2007) translation evaluations, the
Dev2, Dev3 and Eval in 2007. Each of them
contains 16 references respectively. For conve-
nience, we only list the statistics of the first refer-
ence translation after the tokenization. The Dev2
is selected as the development corpus, Dev3 and
Eval are taken as evaluation corpora. We show
the statistics using different Chinese word segmen-
tations, which includes translation by taking each
character as a single word, ICT (Zhang and Malik,
2003), LDC (LDC, 2003), unigram segmentation
as described in Section 3 of our own implemen-



Figure 4: Segmentation lattice without weights including all word segmentation alternatives given a
vocabulary.

Figure 5: Segmentation lattice weighted by a language model considering all alternatives given a vocab-
ulary.

tation, alignment derived segmentation as intro-
duced in Section 4 where word alignments in both
directions are combined using IU approach (Och,
2002), as well as the semi-supervised segmenta-
tion using Gibbs sampling described in Section 5.
Running words (R.W.), OOVs of running words,
i.e. OOVs (R.W.) and OOVs of vocabulary, i.e.
OOVs (voc.) are listed, too.

For the large data track we experiment on
the GALE 2008 task. The GALE (Global Au-
tonomous Language Exploitation) program is one
of the well-known machine translation projects
based on a very large amount of training data,
which is a set of individual corpora collected from
different sources provided by the Linguistic Data
Consortium (LDC, 2005) and GALE. The do-
mains of most sub-corpora are news articles. Some
sub-corpora contain documents from other do-
mains, such as transcriptions of broadcast con-
versation, web text and newsgroups. The corpus
statistics of the bilingual training data and the test
sets are shown in Table 8. The preprocessing step
includes the tokenization and the categorization of
the numbers and dates. Long sentences are seg-
mented into short sentences using the binary seg-
mentation method in (Xu et al., 2005b) to reduce
the training time. After the preprocessing and seg-
mentation, the parallel training data contains more
than 7.5 million sentences and more than 90 mil-
lion words in each language.

Our baseline systems are the official submission
systems by the RWTH-Aachen university in eval-
uations of IWSLT 2007 and GALE 2008. The
training corpus (Train) is used to train the word
alignment and segmentation models. The feature

weights of different translation models are opti-
mized on the development corpus (Dev) using the
downhill simplex (Press et al., 2002) algorithm
with respect to the BLEU (Papineni et al., 2002)
score. The resulting systems are evaluated on the
evaluation (Eval) corpora. For convenience we
evaluate hypotheses without case information.

7.1 Statistics of word Length in dictionary

The central idea of the learned and semi-
supervised CWS methods is to generate automat-
ically the lexicon using bilingual information so
that the segmentation is task- and domain- ori-
ented. As there is no unique definition of a ‘cor-
rect‘ lexicon, here we will compare the statistics
on the word lengths in the learned lexicon and
semi-supervised lexicon with the manual lexicon
provided by LDC.

Table 9: Statistics of word lengths in the vocab-
ulary of the LDC lexicon, learned lexicon with
alignment combination IU and semi-supervised
lexicon using GS.

L LDC lexicon learned-IU GS lexicon
count [%] count [%] count [%]

1 2 334 18.6 2 582 16.5 1 941 29.3
2 8 149 65.1 6 926 44.1 3 599 54.3
3 1 188 9.5 3 670 23.4 508 7.67
4 759 6.1 1 507 9.60 141 2.13
5 70 0.6 490 3.12 24 3.62
6 20 0.2 267 1.70 9 1.36
7 6 0.0 118 0.75 3 0.45

11 0.0 130 0.82 1 0.01
12 527 100 15 690 100 6226 100



Table 7: Corpus Statistics of task IWSLT 2007
Chinese English

Chars ICT LDC Unigram IU GS
Train: Sentences 42942

R.W. 519928 380259 385426 393840 343696 396780 420431
Vocabulary 2776 11760 9425 8802 13309 6226 9933
Singletons 364 4637 2841 2629 4755 727 3937

Dev2: Sentences 500
R.W. 4825 3578 3607 3682 3318 3740 3905

Vocabulary 823 950 1021 987 1078 1004 834
OOVs (R.W.) 7 75 52 49 17 16 216
OOVs (voc.) 6 73 50 47 15 14 44

Dev3: Sentences 506
R.W. 5155 3835 3845 3930 3583 4009 3965

Vocabulary 837 936 996 969 1081 980 831
OOVs (R.W.) 242 72 51 51 18 19 194
OOVs (voc.) 20 69 48 48 16 15 45

Eval: Sentences 489
R.W. 4365 3256 3268 3334 2994 3387 3836

Vocabulary 762 885 944 915 1008 904 819
OOVs (R.W.) 5 60 37 33 9 13 205
OOVs (voc.) 5 59 36 32 9 12 33

Table 8: Corpus Statistics of task GALE 2007
Chinese English

Train: Sentences 7567237
Running Words 93878360 94847485 92778460 101575014

Vocabulary 111858 109852 121123 347436
Singletons 38066 38115 38272 152173

Dev: Sentences 2214
Running Words 47954 48584 47803 57735

Vocabulary 6890 6520 6660 6372
OOVs (running words) 17 17 18 230

OOVs (in voc.) 13 13 14 158
Test: Sentences 1943

Running Words 44340 44927 44281 53150
Vocabulary 6779 6439 6597 6153

OOVs (running words) 15 15 17 246
OOVs (in voc.) 13 13 14 158

Table 9 shows the statistics of the word lengths
in these three lexicons. We calculate the number
of word entries, whose length is from 1 to 7 and
larger than 7. For example, there are 2 334 words
consisting of a single character in the LDC lexi-
con, 2 582 words in the learned lexicon and 1 941
words in the semi-supervised lexicon. These sin-
gle character words represent 18.6% of the total
number of entries in the LDC lexicon, 16.5% in
the learned lexicon and 29.3% in the GS lexicon.

From this table we see that in the manual LDC
lexicon more than 60% of the words consist of two
characters and only about 15% of the words con-
sist of three or four characters. Longer words with
more than four characters are used seldom. Evi-
dently, there are too many words with more than
two characters in the learned dictionary. In the GS
lexicon, the length distribution is similar to that in
the LDC lexicon. There are about 15% word en-
tries containing more than two characters. Figure 6
visualizes the statistics in Table 9. The horizontal

axes show the word lengths and the vertical axes
show the percentage of the word entries in the lex-
icon with a given length.

Figure 6: Curves of number of words given a
length in the LDC lexicon, learned lexicon with
alignment combination IU and semi-supervised
lexicon using GS

There are frequencies for each word entries in
the lexicon. If we take these frequencies into
account, we obtain the expected total number of



Figure 7: Curves of total number of words given a
length in the LDC lexicon, learned lexicon with
alignment combination IU and semi-supervised
lexicon using GS

words given a length in the lexicon. The percent-
ages are shown in Figure 7. For example, if the fre-
quency of one two-character word entry is ten, we
add ten to the two-character words count instead
of one. Figure 7 shows that the word distribution
in the manual LDC lexicon is closer to that in the
GS lexicon than to the learned lexicon.

7.2 Evaluation results
We show the translation results of CWS meth-
ods in Table 10. This includes translation on
characters, i.e. each character is taken as a
word, LDC (LDC, 2003), CRF (Andrew, 2006),
ICT (Zhang and Malik, 2003), unigram, 9-gram
method described in Section 3, our alignment de-
rived segmentation with three alignment combi-
nation approaches in Section 4 and our semi-
supervised method (GS) in Section 5 as well as the
integrated word segmentation in Section 6. The
evaluations are performed under automatic criteria
WER, PER, BLEU and TER (Snover et al., 2006)
scores.

From Table 7.2 we see IU combination per-
forms the best with respect to the translation re-
sult, among all the alignment combination meth-
ods, right, intersect and IU (Och, 2002). The in-
tegrated Chinese word segmentation performed on
the baseline unigram segmented system leads to a
consistent improvement in the translation perfor-
mance with respect to the TER score. As more
word segmentation alternatives are introduced, the
average sentence length of translation using inte-
grated approach is larger than that of the base-
line approach, so that the BLEU scores decrease
slightly. The GS is evaluated using our full model
with both monolingual and bilingual information
according to Section 5.3. The model weights λ
are optimized using the Powell (Press et al., 2002)
algorithm with respect to the BLEU score. We ob-
tained λ1 = 1.4, λ2 = 1 and λ3 = 0.8 as optimal
values and T = 4 as the optimal number of itera-
tions of re-alignment with GIZA++. The unigram
method is implied to initialize the GS method and
to segment the test corpus using a lexicon learned

by GS. From the corpus statistics in Table 7 we ob-
serve that the vocabulary size of the Chinese train-
ing corpus is smaller in GS than in the baseline
method, even though the number of running words
is similar in both corpora. This shows that the dis-
tribution of Chinese words is more concentrated if
using GS. In the final translation results, under all
test sets and evaluation criteria, GS outperforms
the other methods. The absolute WER decreases
with 1.2% on Dev3 and with 1.1% on Eval data
over baseline unigram method.

Table 11 shows the translation performance on
the GALE 2007 task. In this table ’Unigram+GS
X’ means to linear interpolate the LDC lexicon and
the lexicon generated by GS method with a weight
X. For instance, ’Unigram+GS 0.5’ indicates the
combination method of semi-supervised CWS and
unigram segmentation, where the probability of
each word in the manual lexicon is interpolated
with the probability of this word in the GS trained
lexicon with a weight of 0.5. ’Unigram+GS 0.6’
indicates the combined method with a weight of
0.6 for manual lexicon and 0.4 for GS trained lex-
icon. The combined method improved the perfor-
mance with 0.5% in the BLEU score compared to
the baseline method.

To measure the diversity of translation systems
generated using different Chinese word segmen-
tations, we performed leaving-one-system-out ex-
periment. In Table 12 we show the translation per-
formance by leaving a single system out of sys-
tem combination and re-optimizing the weights on
the Test08 data. The Dev08 data was used as a
blind test set. The experiment was performed on
the Newswire documents. We see that by adding
the system with GS word segmentation, the BLEU
score enhances with 0.4% and the TER decreases
with 0.3% absolutely, which contributes more than
the LDC system does to the final translation per-
formance.

7.3 Effect of segmentation on translation
results

We present some examples of translation outputs
to show that the segmentation may have effect on
the translation quality in Table 13. Three exam-
ples are selected from our automatic translations
of the Eval corpus. For each of them we show
the segmented Chinese source sentence using the
baseline unigram, alignment derived segmentation
and semi-supervised segmentation method (GS),
as well as their corresponding translation and the
human reference translation.

In the first example both GS and baseline
methods lead to correct segmentations, while the
learned segmentation results in an error, because
tJshould be separated into two words. tmeans
‘late‘ andJmeans ‘a little‘.



Table 10: Translation performance with different CWS methods on IWSLT 2007[%]

Test Method WER PER BLEU TER
Dev2 Unigram (Baseline) 38.2 31.2 55.4 37.0

derived-intersect 38.2 31.2 55.4 37.0
GS 36.8 30.0 56.6 35.5
integrated 37.4 30.5 55.9 36.1

Dev3 Unigram (Baseline) 33.5 27.5 60.4 32.1
derived-intersect 32.9 27.0 60.4 31.7
IU 32.3 26.7 61.1 31.2
GS 32.3 26.6 61.0 31.4
integrated 32.8 36.3 60.1 31.0

Eval Characters 49.3 41.8 35.4 47.5
LDC 46.2 40.0 39.2 45.0
CRF 47.0 41.5 37.2 46.0
ICT 45.9 40.4 40.1 44.9
Unigram (Baseline) 46.8 40.2 41.6 45.6
9-gram 46.9 40.4 40.1 45.4
derived-right 47.4 42.2 38.5 46.5
derived-intersect 46.5 40.1 39.5 45.3
derived-IU 46.4 40.5 40.0 45.3
GS 45.9 40.0 41.6 44.8
integrated 44.9 39.4 41.0 43.5

Table 11: Translation performance with different CWS methods on GALE 2007[%]

Test Method WER PER BLEU TER
Eval LDC 73.0 49.5 28.2 67.1

Unigram 73.0 49.7 28.4 67.2
Unigram+GS 0.5 72.6 48.7 28.5 66.3
Unigram+GS 0.6 72.5 48.6 28.7 66.3

Table 12: Translation performances of leaving one-out in system combination on GALE 2007[%].

Newswire Test 08 Dev 08
BLEU TER BLEU TER

Best single system 31.0 61.6 32.1 61.8
System combination 34.9 57.8 35.7 57.5
leave out rwth-pbt-LDC 35.2 57.7 35.6 57.6
leave out rwth-pbt-GS 34.6 58.0 35.3 57.8

In the second example the translation results in
the learned and GS segmentation are closer to the
reference translation. As �or �occurs more of-
ten than they are combined in the training corpus,
it is easier to recognize the single character word
in the evaluation text.

In the third example the segmentation with both
learned method and baseline method made mis-
takes. For the learned method >É should be in
two words, where>means ‘please‘ andÉmeans
‘give‘. Though, the baseline segmentation is rea-
sonable for an human evaluation, the translation
result is still erroneous, because the sequence of

characters ’,=,�’ never appears in the train-
ing corpus, but,�can be found many times. As
both of them mean ‘coke‘, we only need the word
’,�’ to obtain the correct translation.

We compared all translation outputs on the Eval
set using GS with the baseline method. 196 sen-
tences are different out of 489 lines, at which 64
sentences from GS are better, 33 sentences are
worse, and the remaining sentences have similar
translation qualities.



Table 13: Examples of segmentation and transla-
tion outputs with baseline, alignment derived and
GS segmentation.

a) Baseline >·ª·����
please show me the in .

Learned-IU >·ª·����
please show me the total price .

GS >·ª·����
please show me the total price .

REF can you tell me the total amount ?

b) Baseline >É ·,=,��
please give me .

Learned-IU >É·,=,��
please give me a good coke .

GS >É·,=,��
please give me a coke .

REF coke , please .

7.4 Conclusions
We have successfully developed novel Chinese
word segmentation methods for statistical machine
translation. In the training process, Chinese word
boundaries are learned jointly with the word align-
ments. Both monolingual and bilingual informa-
tion are employed to derive a segmentation suit-
able for machine translation. New Chinese words
and distributions are generated automatically. In
the translation time multiple segmentation alter-
natives instead of the single-best segmentation are
considered, and the segmentation decision is taken
during the search for the best translation. Not only
in a small, but also in a large data environment, our
method outperformed the standard Chinese word
segmentation approach in terms of the final Chi-
nese to English translation quality.
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