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1.0 Site affiliation 
 

Institute of Computing Technology Chinese Academy of Sciences / Dublin 

University 

 

2.0 Contact information 
 

Jia Xu xujjia@gmail.com  

 

3.0 Submissions 
 

openmt15_eval_ict_chi2eng_cn_text_primary 

 

4.0 Primary system specs 
 

The primary system outputs above were generated by ICT’s ensemble 

machine translation system, which is based on a number of novel and 

known system combination techniques and machine learning ensemble 

methods, including the recently developed design bagging algorithm. 



 

4.1 Core MT engine algorithmic approach 
 

- Translation systems: 

We made use of various, distinct translation systems: Moses [10], 

Moses-Hiero [10], Moses-factor [10], Groundhog [11], Jane [12], 

Moses-OSM-OXLM [13],[17], CDEC [14], design-bagging [4] adapted to 

Moses, design-bagging adapted to CDEC, and design-bagging adapted to 

Jane. 

 

- Tokenization:  

We applied ICT-CLAS[1] and integrated Chinese word segmentation [2] 

for Chinese tokenization. We also applied Chinese monolingual spell 

checker, and OOV handling using Out-of-domain training corpus. 

 

- Translation model:  

Word alignments are generated based on GIZA++ [8] and mGIZA [9]. 

Training set include in-domain training data and selected 

out-of-domain training data based on the development corpus (Bolt 

Phase2/Phase3) similar to [18]. We automatically [18] selected 30K 

sentence pairs from the in-domain training corpus and applied the 

bilingual and sentence segmentation on these sentences [5].  

 

- Language model:  

The language model for each domain (SMS, CTS, Chat) is an interpolation 

of many language models [3]. It includes language models trained with 

different data: in-domain training data, development-data-selected 

out-of-domain training data, and English text for Arabic training data. 

We also incorporated language models learned with known and also newly 

developed approaches, including SRILM [10], RNNLM [16], and our 

design-bagging language model adapted on SRILM. The order of SRILM 

is 5-gram. We also used our newly developed phrase-based language model 

[6], [7] added in as additional features aiming to capture phrase-level 

dependencies. 

 

- Tuning:  

The tuning set is selected from the development set (Bolt Phase2/Phase3) 

with the same size as the eval set. We used MERT [10] for both single 

system tuning and for the system combination/ensemble methods. 

 

 



- Domain adaptation: 

We obtain three sets of training and tuning data set [3], one for domain 

SMS, one for Chat, and one for CTS. Each training set contains in-domain 

data and selected data from out-of-domain training set based on the 

development set (BOLT-phase2/phase3). The sentences close to the eval 

set are selected from the development set acting as a tuning set for 

each domain. 

 

- Design bagging: 

For Moses, Jane, and CDEC systems, the design bagging methodology [4] 

was applied with 35 bootstraps with each of the bootstrap 40% of the 

original training data. 

 

- Post-processing:  

We used the default true-casing tool of Moses, and used memory-based 

translation on nearly 200 sentences that are close to the Chinese 

sentences in the training set, where closeness is measured by BLEU.  

 

4.2 Critical additional features and tools used 
 

ICT-CLAS Chinese word segmentation [1] 

Monolingual spell-checker in Chinese 

Chinese-named entity transliteration 

 

4.3 Significant data pre/post-Processing 
 
OOV handling: we automatically find the translation of OOV words from 

the out-of-domain training corpus using word alignment information. 

 

4.4 Other data used (outside the LDC training data) 
 
No other data 

 

5.0 Key differences in contrastive systems 
 
Not applicable 

 

6.0 SysCombo submissions 
 
We applied MEMT [15] for system combination. 

 



For the SMS domain we combined Moses-standard, Moses-factor, 

Moses-Hiero, Moses-OSM-OXLM, Groundhog, Jane, 

Design-bagging-for-Moses-standard, Design-bagging-for-CDEC, and 

Design-bagging-for-Jane. 

 

For the Chat domain we combined Moses-standard, Moses-factor, 

Moses-Hiero, Moses-OSM-OXLM, Groundhog, Jane, 

Design-bagging-for-Moses-standard, and Design-bagging-for-CDEC.  

 

For the CTS domain we combined Moses-standard, Moses-factor, 

Moses-Hiero, Moses-OSM-OXLM, Groundhog, and Jane. 
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